
Sendyne Isolation Monitor For Electric and Hybrid Vehicles

Applications

 Monitoring electric and hybrid vehicle power systems

Operating Specifications

Sendyne®

Sendyne[®] Sensing Products Family

Description

The Sendyne SIM100MOD is the first high voltage isolation monitoring device for EV/HEVs capable of operating correctly even when the battery is active, and experiencing large voltage variations.

The SIM100MOD continuously monitors the isolation resistance between a vehicle's IT (Isolated Terra) power system and chassis for deterioration of insulation and potentially dangerous levels of leakage current. The SIM100MOD detects not only resistive leakages but also capacitively stored energy that could be harmful to human operators.

Due to a proprietary, patent-pending advanced algorithm, the module is capable of detecting all sources of leakage, including multiple, simultaneous symmetrical and asymmetrical faults, as well as resistive paths between the chassis and points in the battery with the same potential as the chassis. In the case of an insulation fault, the unit identifies the relative position of the fault in relation to the battery's terminals.

Battery-connected V_{x1} (Vp) and V_{x2} (Vn) voltage inputs can measure ±1000 V in reference to Chassis (0 V). Communications are achieved via an isolated CAN 2.0B interface (500 kbit/s), with an input voltage range of 5 V to 53 V, and a wide temperature range of -40 °C to +105 °C. The module was designed to ISO 6469-3:2011-12 / FMVSS 305.

Operating Specifications	
Parameter	Value
Insulation monitoring range	0 to 2.0 M Ω (each of the two measurement lines to chassis)
Power supply	+4.8 to +53 V (Variable, accommodating +5 V to +48 V power supplies)
Interface	CAN 2.0B isolated, 120Ω termination resistor
Voltage measurement range	2 Channels: ±1000 V/channel continuous, no signal clipping
Rating	Automotive
Power consumption	< 400 mW
Module operating temperature range	-40 °C to +105 °C (due to connector temperature ratings)

Features

- Measures voltage for each battery terminal to chassis
- Reports battery voltage
- Operates normally while the battery is having large voltage excursions and variations
- Measures and reports modeled leakage resistances per model adapted by the safety standards ISO6469-1, FMVSS §571.305 and others
- Reports calculated isolation resistance in Ω/V per requirements of the safety standards
- Measures and reports the value of capacitance from each battery terminal to chassis
- Calculates and reports the energy stored by the total capacitance between the battery and chassis
- Continuously monitors connections of the voltage sense lines to the battery terminals; reports inadequate connections
- Continuously monitors connection of the unit to chassis; reports inadequate connection
- Provides high immunity to common-mode noise that can be present on the battery terminals
- Provides nonvolatile storage for the value of the maximum (design) voltage of the battery (used in calculations of the isolation resistance and stored energy). If the actual observed battery voltage is higher than the set maximum voltage, the higher value is used in the calculations of the isolation resistance and stored energy
- Provides nonvolatile storage for calibration of the voltage measurements and other parameters; all reported measurements have their respective calibration parameters applied automatically
- Provides built-in galvanically isolated and intrinsically leakage-safe excitation source
- A single CAN-interface transaction (packet) provides sufficient information for determination of the safe status of the system
- Provides measurement of the internal isolated power supply voltage for system diagnostics
- Provides measurement of the module's temperature for system diagnostics

Technical Specifications

Parameter	Min	Тур	Max	Units	Conditions/Comments
Power and General					
Electronics operating	-40		+125	°C	
temperature range					
Connector temperature	-40		+105	°C	
ratings					
Supply Voltage	4.8		53	V	
Supply Power			400	mW	
Start-up time		6		S	After application of power and power
					supply stabilization to the initial calcula-
					tion of insulation resistance
Isolation Resistance Me	asuremen	t			
Isolation resistance	0		2.0	MΩ	From each side of the battery to chassis.
monitoring range					
Isolation monitoring		2.0		MΩ	This is the impedance imposed on the IT
lines resistance					system by each of the two battery voltage
					monitoring lines and the maximum iso-
					lation resistance that can be measured.
Isolation monitoring		±5		%	For isolation resistance range of
uncertainty					100 k Ω to 500 k $\Omega.$ The total measure-
					ment uncertainty includes the contribu-
					tion by the noise and operations of the
					target system. If externally-induced
					noise prevents resolution of the values
					with sufficiently-low uncertainty, then
					the unit holds the last value until the
					noise subsides.
Isolation resistance		0.5		S	The SIM100MOD calculates isola-
calculation period					tion resistance value every 500 ms. If
					uncertainty is higher than 5 %, the unit
					reports the previously calculated value.
Resistance value flagged	0		5	kΩ	Reported isolation resistance value will
as a short					be exactly 0 Ω/V

3

Parameter	Min	Тур	Max	Units	Conditions/Comments
Voltage Measurement					
Nominal full-scale voltage		±1000		V	Continuous operations, referenced to
range					Chassis. No signal clipping.
Voltage offset error	-1	±0.2	+1	V	Vx = 0 V, applies over the full ambient
					operating temperature range,
					$T_{A} = -40 \ ^{\circ}C \text{ to } +125 \ ^{\circ}C$
Voltage gain error	-1	±0.1	+1	%	Over the full ambient operating tem-
					perature range. Calibration and typical
					value at room temperature.
Voltage noise error		100		mV _{RMS}	1 Hz reporting rate
Voltage measurement		1		mV	Minimum discernible voltage change;
resolution					corresponds to one count of ADC,
					voltage report rate of 10 Hz or lower
Permitted battery voltage	15		1000	V	For normal operations of the unit; if bat-
					tery voltage is below 15 V, an error flag
					will be activated and resistance mea-
					surements will pause
Capacitance Measuremen	nt				
Capacitance monitoring	0.1	1	>10	μF	Capacitance from each terminal of the
range					battery to chassis
Capacitance monitoring		±15		%	200 nF to 2 μF
uncertainty					
Capacitance measurement		1		nF	200 nF to 2 μF
resolution					
Temperature Measurem	ent				
Absolute temperature	-5	±0.5	+5	°C	Built-in temperature sensor
measurement error					
Temperature measurement			10	m°C	Practical temperature measurement
resolution					granularity
Noise Immunity of Measu	urements				
Common mode voltage on	20			V _{PK-PK}	No observable effect on isolation resis-
the battery terminals					tance value; measured with square and
					triangular wave test signals at 1 kHz,
					10 kHz and 30 kHz

Parameter	Γ	Min	Тур	Max	Units	Conditions/Comments
Differential mod	le voltage on		100		$V_{_{PK-PK}}$	No observable effect on isolation resis-
the battery term	inals (battery				IKIK	tance value; tested with a battery-voltage
voltage variation	ns)					driving profile that has multiple instan-
						taneous voltage changes up to ±100 V
						and overall slow battery voltage fluctua-
						tion from 330 V to 125 V and back to
						330 V
Isolation						
Test voltage			3		kV_{DC}	CAN interface to chassis, 1 min. dura-
						tion
ESD tolerance				25	kV	Air discharge
Communicatior	15					
Interface	Spec	Spee	d	Ter	mination	
CAN	2.0B	500 k	bit/s	120	Ω termination	n resistor
Connectors						
Interface	Manufacturer	· Po	sitions	Pa	rt number	Description
CAN & power	Molex		4	34	7920040	P1: 4 pos. header, shrouded connector
on board						(2.00 mm), through hole tin
Can & power	Molex		4	34	7910040	Use appropriate crimp contacts
mating con.						(available for AWG 22, 24 and 26)
Voltage sensing	Molex		2	39	299029	J1, J3, J4: MINIFIT JR HDR 02P 94V-0
on board						30AU
Voltage sensing	Molex		2	39	013028	MINIFIT JR RCPT DR SIDETABS 2
mating con.						CKT 94V-0. Crimp contacts available for

CAN and Power header & mating connectors

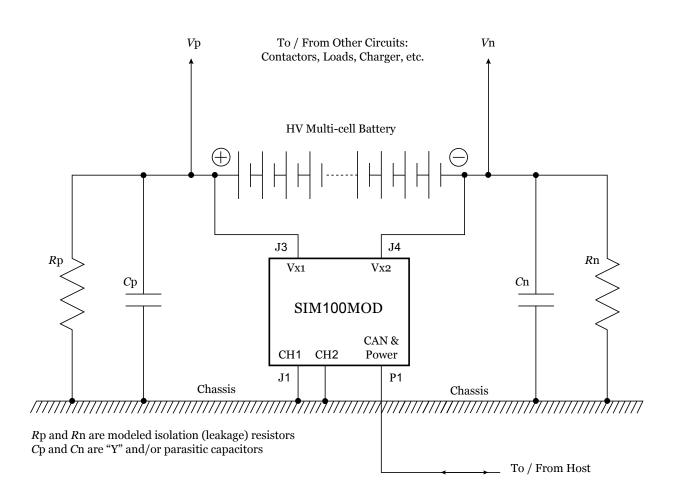
Voltage sensing header & mating connectors

The SIM100MOD uses Molex connectors, part numbers: 347920040 and 39299029. For more details please see the Molex datasheets:

 $www.molex.com/pdm_docs/sd/347920040_sd.pdf~and~www.molex.com/pdm_docs/sd/039299029_sd.pdf$

5

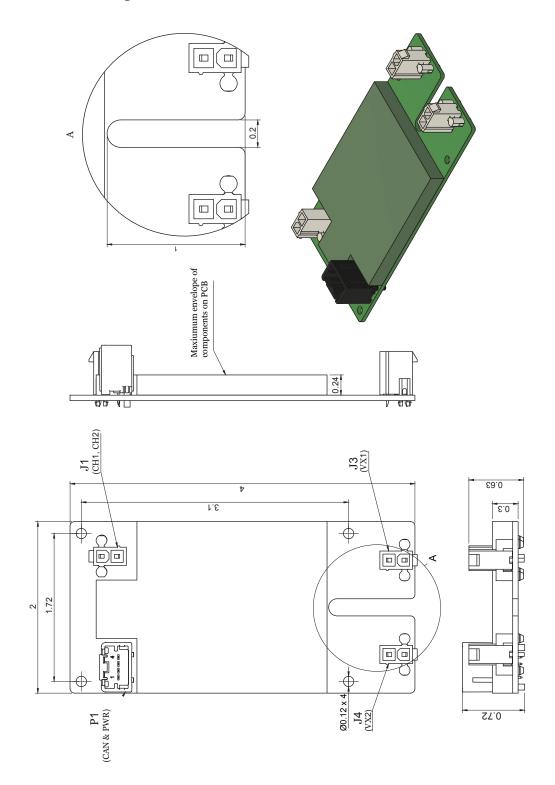
Sendyne SIM100MOD


Pin Number	Signal Name	Comments
~		
Connector J1		
Connector J1 1	CH1	Chassis connection 1. One of two independent connections to Chassis.

Note: Signals CH1 and CH2 should have independent connections to Chassis. The SIM100 module continuously monitors continuity between these two signals. This information is used for examination of the assured connection of the SIM100 module to Chassis. Absence of solid Chassis connections is reported as a Fault; at that time the results of the Isolation Measurements are not valid.

Connector J3		
1	V _{x1}	To be connected to positive terminal of the Battery. The two pins in this
		connector are shorted on the PCB; either one or both (redundant) pins can
		be used for the electrical connection.
2	V _{x1}	Same as above.
Connector J4		
1	V _{x2}	To be connected to negative terminal of the Battery. The two pins in this
		connector are shorted on the PCB; either one or both (redundant) pins can
		be used for the electrical connection.
2	V _{x2}	Same as above.
Connector P1		
1	VCC	Positive power supply, can be any voltage within +4.8 V to +53 V.
2	CAN_L	One of two CAN communications lines. Termination resistor of 120 Ω is
		installed between these two lines on the SIM100 module.
3	CAN_H	One of two CAN communications lines. Termination resistor of 120 Ω is
		installed between these two lines on the SIM100 module.
4	GND	Common / GND connection, negative return for the power supply.

Note: Signal names for pins of connector P1 are labeled on the PCB. Signal GND is galvanically isolated from Chassis.


Typical Applications

For information on the Host controller interactions with the SIM100 module, and readout of the results of the module's measurements, please refer to the separate "SIM100MOD CAN Protocol" document.

Mechanicals

SIM100MOD general dimensions [inches]

Ordering Information

Part Number	Description
SIM100CA-MOD	SIM100MOD module
SIM100KIT	SIM100MOD module, CAN to USB protocol converter
	for PC communication, cables, and Windows software

Revision History

Revision Number	Date	Comments
0.4	04/26/2017	Minor corrections
0.3	03/22/2017	Minor corrections
0.2	03/06/2017	Updated features and electrical specs
0.1	02/28/2017	Preliminary; initial release

Information contained in this publication regarding device applications and the like, is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

SENDYNE MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESSED OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Sendyne disclaims all liability arising from this information and its use. Use of Sendyne devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Sendyne from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Sendyne intellectual property rights.

Patents

US Pat. 8,373,408 US Pat. 8,350,552 US Pat. 8,289,030 Other patents pending

Trademarks

The Sendyne name and logo are registered trademarks of Sendyne Corp.

All other trademarks mentioned herein are properties of their respective owners.

© 2017 Sendyne Corp. All Rights Reserved. 1234567890 1234567890

